
Dynamical Systems
Tutorial 7: Linear Systems

May 22, 2019

The material in this tutorial is taken from chapter 2 in Meiss.
A linear differential equation is an equation of the form

dx
dt

= Ax

where x ∈ Rn and A ∈ Rn×n.
As we saw in the previous tutorial, we are interested in linear differential equa-

tions as their behavior determines the stability of orbits of more general, nonlinear
systems.

1 2−D Linear Systems

Recall, for a two-dimensional system, with A =

[
a b
c d

]
, if we denote τ ≡ tr(A),

δ ≡ det(A), we have seen the different types of fixed points one may get (see
Figure 2.1 from Meiss).

What happens in the general, n−dimensional case?

2 n−D Linear Systems
ẋ(t) = Ax, t ∈ R,x ∈ Rn, A ∈ Rn×n (1)

For a 1-dimensional system, we saw the solution for a linear equation is the
exponent. Let us check if x(t) = eAtx0, is a solution:
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d
dt (x(t)) =

d
dt

(
[I +At + 1

2!A
2t2 + · · ·+ 1

n!A
ntn + ...]x0

)
= [A+A2t + · · ·+ 1

(n−1)!A
ntn−1 + ...]x0

= A[I +At + 1
2!A

2t2 + · · ·+ 1
(n−1)!A

n−1tn−1 + ...]x0 = AeAtx0

= Ax.

(2)

How does the exponential eAt behave in time? For this we recall the following
notions from linear algebra.
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2.1 Eigenvalues and eigenvectors
An eigenvector v is a nonzero solution to the equation

Av = λv

for an eigenvalue λ. This equation has a solution only when the matrix A−λI is
singular, or equivalently the characteristic polynomial (eq. 2.3 in Meiss) p(λ) ≡
det(λI−A) = 0. Notice v may be scaled to our convenience.

Since the equation is linear, the solutions obey the linear superposition prin-
ciple. Hence any linear combination of solutions is a solution. This implies that
the set of solutions of a linear ODE is a vector space. As a consequence, if there
are k different eigenvector solutions of the form (2.4), then there is a more general
solution of the form

x(t) = Σ
k
i=1cieλitvi

for any value of the constants ci.
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When k = n, or in other words the span of the eigenvectors is Rn, then A is
said to have a complete set of eigenvectors. In this case, the linear combination
of solutions as above covers the entire solution space. However, sometimes ma-
trices have multiple eigenvalues. Such an eigenvalue may have more than one
eigenvector, though it need not. The number of its eigenvectors is called the

A basic theorem of linear algebra states that the geometric multiplicity of λ

is at most its algebraic multiplicity. There are n independent eigenvectors when
the geometric multiplicity of each eigenvalue equals its algebraic multiplicity;
otherwise there is a deficiency of eigenvectors. What determines the structure of
the solution of a linear ODE is the number of linearly independent eigenvectors A
has and their associated eigenvalues.
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2.2 Diagonalization
The simplest case is when A is diagonalizable, or semisimple. (n-distinct eigen-
values, real symmetric1, hermitian2), that is, has n eigenvectors. We have Λ =
P−1AP, with Λ diagonal matrix, and P an invertible matrix comprised of A’s
eigenvectors.

So instead of solving:

ẋ = Ax = PΛP−1x→ P−1ẋ = ΛP−1x. (3)

So y = P−1x we get:
ẏ = Λy. (4)

where now, eΛ = diag{eλ1, · · · ,eλn}. So the solution is (in vector form):

y(t) = etΛc

Where c is a vector of coefficients determined by the initial conditions. To
return to x, we note that x0 = Py0 = Pc, and so

x(t;xo) = PetΛP−1x0 = etAx0

1A = AT

2A = AH
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2.3 Complex eigenvalues

giving a "normal form" that is not diagonal but relatively simple, as

for B =

[
a b
−b a

]
, I the unit matrix, and σ =

[
0 1
−1 0

]
. The most general basis

for solutions with complex eigenvalues is tkeαt cos(βt) and tmeαt sin(βt), where k
and l are determined by the size of the jordan block (less than the maximal block).
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2.4 Jordan form
For the general case we have Jordan form: A = T JT−1, so Ẋ = AX means X(t) =
X0eAt = X0eT JT−1t = X0TeJtT−1.

An example of a Jordan cell 3×3:

J̃ =

λ 1 0
0 λ 1
0 0 λ


J = λI+N, N - nilpotent matrix (∃q ∈N, s.t Nq = 0n×n,q < n, where N,J are

n×n matrices).
The computation of the exponent operator on A is aided in two things:
1. we can use the binomial formula for convenience of representation, since

IN = NI:

Jp = (λI +N)p =
∣∣

p=2(λI +N)2 = λ
2I +N2 + IN +NI

2. The fact that N is a nilpotent matrix assure us that the representation is
finite.

so a Jordan form solution is:

etJ̃ =

eλt teλt 1
2!t

2eλt

0 eλt teλt

0 0 eλt


Notice we get polynomial growth!
The subspace associated with a Jordan block is called the

The theorem of primary decomposition (from linear algebra) states that the
space spanned by the collection of all (invariant) generalized eigenspaces is the
full space.
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We define:

These are the column vectors of the matrix T (the Jordanizing matrix).

2.5 The exponential
Finally, we can bring all of the above together by using the semisimple-nilpotent
decomposition:

where [S,N] = SN−NS, i.e. the matrices commute.

notice Nn = 0 necessarily, and so the sum is indeed finite.
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3 Spectral stability

Note that by the theorem of primary decomposition, E =Eu⊕Ec⊕Es. More-
over, since each of the generalized eigenspaces is invariant, so are the stable, cen-
ter and unstable subspaces. One can describe the evolution in each subspace by
constructing a "restriction" to this subspace - see example. A system with no
center subspace is called hyperbolic.

While finding whether or not a system is spectrally stable is relatively easy,
this does not necessarily give information on stronger types of stability (such as
linear stability). When the nilpotent part of A is non-zero, ie. we have eigenvalues
whose geometric multiplicity is strictly smaller than their algebraic multiplicity,
then etA contains terms that are powers of t multiplied by exponents. If Im(λ)≥ 0,
these terms are unbounded.
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4 Examples
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