Dynamical Systems
Tutorial 7: Linear Systems

May 22, 2019

The material in this tutorial is taken from chapter 2 in Meiss.

A linear differential equation is an equation of the form
dx
T _A

a7

where x € R” and A € R™*",

As we saw in the previous tutorial, we are interested in linear differential equa-
tions as their behavior determines the stability of orbits of more general, nonlinear
systems.

1 2—D Linear Systems

Recall, for a two-dimensional system, with A = [Z Z} , if we denote T = tr(A),

O = det(A), we have seen the different types of fixed points one may get (see
Figure 2.1 from Meiss).
What happens in the general, n—dimensional case?

2 n—D Linear Systems

i(t) =Ax,t e R,xeR" A e R"™" (1)

For a 1-dimensional system, we saw the solution for a linear equation is the

exponent. Let us check if x(¢) = ¢’’xy, is a solution:
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Figure 2.1. Classification of the eigenvalues for a 2 = 2 linear system in the
parameter space of the trace, T, and determinant, 5.
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How does the exponential ¢’ behave in time? For this we recall the following

notions from linear algebra.



2.1 Eigenvalues and eigenvectors

An eigenvector v is a nonzero solution to the equation
Av =DM\

for an eigenvalue A. This equation has a solution only when the matrix A — A/ is
singular, or equivalently the characteristic polynomial (eq. 2.3 in Meiss) p(A) =
det(AM —A) = 0. Notice v may be scaled to our convenience.

The charactenistic polynomial (2.3) 1s an nth-order polynomial and so it has n zeros,
4i. Some of the zeros may be identical, but these should be counted with their

& algebraic multiplicity: 1f a polynomial can be written p(r) = (r — 2)* g(r).
with g (4) # 0, then X is a root with algebraic multiplicity k.

An eigenvalue whose algebraic multiplicity 1s larger than one i1s called a multiple
eigenvalue. The fundamental theorem of algebra states that an nth degree polynomial has
exactly n zeros when they are counted with their algebraic multiplicity.

Each eigenvector corresponds to a simple solution of the ODE: assume that x(r) =
c(t)v for ¢ : B — R and substitute this into (2.1) to obtain

v = cAv = civ,

which when v # 0 implies that ¢ = Ac since the eigenvector is constant. The general
solution of this scalar ODE is c(1) = ¢ ¢, for an arbitrary constant ¢,. Therefore, the

vector
A

‘v (2.4)

is a solution to (2.1). Geometrically, (2.4) corresponds to a straight-line solution {(when A
is real): x(r) is a vector along v whose length changes exponentially with time.

xi(t) = cue

Since the equation is linear, the solutions obey the linear superposition prin-
ciple. Hence any linear combination of solutions is a solution. This implies that
the set of solutions of a linear ODE is a vector space. As a consequence, if there
are k different eigenvector solutions of the form (2.4), then there is a more general
solution of the form

A

x(t) =X ciety;

for any value of the constants c;.



Example: Consider the 2 = 2 system

. -8 =5
: . %)
X —( [0 7 ).1. (2.5)

The charactenstic polynomial 1s p(i) = A4+ —6=(h—=2)(A+3). sothere are two
eigenvalues, each with algebraic multiplicity one, 41 = 2 and 4; = —3. The eigenvector
equations (2.2) are

(A—EI]U[:( _:E _g )'I.:‘[:D = U'I_:( _,-], ]

-5 -5 1
(A—?hﬂl-:—( 10 m)ug—ﬂ = L'z—(_l).

This gives the two solutions
I . | ( I ] I | ( I ) .
X| = €€ _ ; X3 = (7€ 1 .

When k = n, or in other words the span of the eigenvectors is R", then A is
said to have a complete set of eigenvectors. In this case, the linear combination
of solutions as above covers the entire solution space. However, sometimes ma-
trices have multiple eigenvalues. Such an eigenvalue may have more than one
eigenvector, though it need not. The number of its eigenvectors is called the

& geometric multiplicity: Aneigenvalue A has geometric multiphcity k if it has
k linearly independent eigenvectors v;, i.e., (A — AT v; = 0 and dim(span{uv,,
Ui...., U} = k.

A basic theorem of linear algebra states that the geometric multiplicity of A
is at most its algebraic multiplicity. There are n independent eigenvectors when
the geometric multiplicity of each eigenvalue equals its algebraic multiplicity;
otherwise there is a deficiency of eigenvectors. What determines the structure of
the solution of a linear ODE is the number of linearly independent eigenvectors A
has and their associated eigenvalues.



2.2 Diagonalization

The simplest case is when A is diagonalizable, or semisimple. (n-distinct eigen-
values, real symmetricE], hermitiarE[), that is, has n eigenvectors. We have A =
P 1AP, with A diagonal matrix, and P an invertible matrix comprised of A’s
eigenvectors.

So instead of solving:

x=Ax=PAP 'x — P lx = AP 'x. 3)
Soy=P lx we get:
y=Ay. 4)
where now, e® = d iag{ekl e ,ex"}. So the solution is (in vector form):
y(t) = ec

Where ¢ is a vector of coefficients determined by the initial conditions. To
return to x, we note that xo = Pyy = Pc, and so

x(t;x) = Pe* P 1xy = e xq

1A:AT
2A:AH



2.3 Complex eigenvalues

First, note that if the matrix A 1s real, then so are the coefficients of the charactenstic
polynomial p(X) = det(Af — A). Therefore, if p(3) has acomplex root & = a+ib, then its
conjugate A = a —ib is also a root. Moreover, if Av = Jv, then Av = ALv = Av. Therefore,
the corresponding eigenvectors are also complex conjugates.

Example: For the matrix A = (_? SJI, the eigenvalues are » = £i and the eigenvectors are

v = I[:IL} Choosing P = (1 _]] and using (2.13) and property (iv) of Corollary 2.2 gives

11 et 0 I —i \ _( cost sint
i —i 0 e | i /] \ —sint cost |

which is the same as the real matrix, (2.29), obtained using the infinite series. M

€!.ﬂ| — PEI'."'.P—| —

bd | =

Suppose that the n = n real matrix A has a complex eigenvector v and eigenvalue A.
These can be written in terms of their real and imaginary parts as

A=a+ib, v=u+iw.
Since Av = Av = (au — bw) + i(aw + bu) and A is real, then
Au=au —bw, Aw = bu+ aw.

Ifwe let P = [u, w] be the n x 2 matrix with real columns u and w, then these two equations

can be combined to obtain
AP=P( 4 b), (2.34)
—b a

giving a "normal form" that is not diagonal but relatively simple, as

o8 — ptal giba _ at ( cos(bt)  sin(bt) ) ‘ (2.31)

—sin{bt) cos(bt)

—b -1 0
for solutions with complex eigenvalues is e cos(Bt) and #"e™ sin(Bt), where k
and [ are determined by the size of the jordan block (less than the maximal block).

for B = { 4 Z} , I the unit matrix, and ¢ = [ 0 1} . The most general basis
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2.4 Jordan form

For the general case we have Jordan form: A = TJT !, s0 X = AX means X (t) =
Xoe' = Xoe™T ' = XoTe" T
An example of a Jordan cell 3 x 3:

J=

o o >
S > =
> = O

J=M-+N, N - nilpotent matrix (g € N, s.t N? = 0,,x,,,q < n, where N, J are
n X n matrices).

The computation of the exponent operator on A is aided in two things:

1. we can use the binomial formula for convenience of representation, since
IN = NI

JP=(M+NY =| (M+N)*>=A\I+N*+IN+NI

p=2

2. The fact that N is a nilpotent matrix assure us that the representation is
finite.
so a Jordan form solution is:

) exz te7" ZL!tZeM

=10 M teM
0 0 M

Notice we get polynomial growth!
The subspace associated with a Jordan block is called the

& generalized eigenspace: Suppose A, 1s an eigenvector of a linear operator T
with algebraic multiplicity n,.. The generalized eigenspace of 4, is

Ey =ker[(T — A 1)™]. (2.35)
The theorem of primary decomposition (from linear algebra) states that the

space spanned by the collection of all (invariant) generalized eigenspaces is the
full space.



We define:
& generalized eigenvector: A nonzero solutionto (T —4;1)" v = 0, where n;
is the algebraic multiplicity of 4, is a generalized eigenvector of 7.

These are the column vectors of the matrix 7' (the Jordanizing matrix).

2.5 The exponential

Finally, we can bring all of the above together by using the semisimple-nilpotent
decomposition:

Theorem 2.8. A matrix A on a complex vector space E, has a unigue decomposition,
A = 5+ N, where 5 is semisimple, N is nilpotent, and |5, N] = (.

where [S,N] = SN — NS, i.e. the matrices commute.

The semisimple-nilpotent decomposition leads to a compact and relatively computable for-
mula for the exponential. Letting A = § + N, where § = PA P!, since N is nilpotent,

-n—l
tA 15 N th p—1
gl =g’eg” =P P E
j=0

(tN)/

I

(2.38)

notice N = 0 necessarily, and so the sum is indeed finite.



3 Spectral stability

= spectral stability: A linear system 1s spectrally stable if none of its eigenval-
ues has a positive real part.

The sign of the real part of the eigenvalue distinguishes the subspaces on which the so-
lutions have growing or decaying behavior. Denote the (complex) generalized eigenvectors
by v; =u; + iw;. Then

e E' = span {u;, w; : Re(4;) = 0} 1s the unstable subspace,
e EY = span {u;, w; : Re(4;) = 0} 1s the center subspace, and

- EY = span {u;, w; : Re(d;) = 0} is the stable subspace.

Note that by the theorem of primary decomposition, E = E* @ E“ @ E*. More-
over, since each of the generalized eigenspaces is invariant, so are the stable, cen-
ter and unstable subspaces. One can describe the evolution in each subspace by
constructing a "restriction" to this subspace - see example. A system with no
center subspace is called hyperbolic.

While finding whether or not a system is spectrally stable is relatively easy,
this does not necessarily give information on stronger types of stability (such as
linear stability). When the nilpotent part of A is non-zero, ie. we have eigenvalues
whose geometric multiplicity is strictly smaller than their algebraic multiplicity,
then ¢ contains terms that are powers of r multiplied by exponents. If Im()) > 0,
these terms are unbounded.



4 Examples

Example: Consider the multiplicity-two case

-1 1 =2
A= 0 -1 4|, pR=@+DHir-1)=0. (2.40)
0 0 1

The eigenspace for A3 = | is obtained by solving

-2 1 -2 0
(A—DNvy = 0 -2 4 Juy=0 thusvy=| 2 }.
o 0 0 1

To obtain the generalized eigenspace. for | = L, = —1, solve
00 0 a
(A—FI}IEU: 00 8 Jv=0 thesv=| & |,
00 4 0

for arbitrary constants @ and b. The space E; is spanned by v; = (1,0,0)" and v2 =
(0, 1.0)7. Setting P = [vy, v2, v3] gives

1 00
p={01 2}, p'l=
0o 0 1
0
4
|

et 0 0
et =pPehpPleN=pP| 0 ' 0 | P YI+1N),
0o 0 ¢

et 0 1] 1 v+ -2t et te! —2te!
= 0 et —2et42 0 1 0 =10 et 274271 B
0 1] e o0 1 0 0 &'



Example: Consider again the example (2.40). The eigenvalue A3 = 1 has eigenvector
vs = (0,2, ). Consequently the matrix I/ = Al is the 1 x 1 matrix defined by the
equation

AL‘} = 11'3 = 1'3U,
and U = (1). The dynamics restricted to this subspace is simply ¢3 = lei. The stable
subspace with eigenvalue A; = —1 has basis v; = (1,0, 0)7 and v = (0, 1, 0)7, so that
the stable matrix § = Al is the 2 x 2 matrix defined by

1 0 —1 1 1 0
Al 0 1 | = O -1 =101 U
0 0 0 0 0 0

which gives U = {_é :} The dynamics in this subspace 15 therefore

e\ _ [ —a+c
t':'g o —C3 !

and ¢), ¢; are simply the x; and x; components. [l

Example: A matrix is normal if it commutes with its adjoint: [A*, A] = 0, where A* = AT
is the conjugate transpose of A. It is not hard to see that the eigenspaces of a normal matrix
are orthogonal. The dynamics of a stable linear system with a nonnormal matrix can exhibat
a surprising temporary growth. Consider, for example,

_f=(_:j _"2})1: = xm=cle-f(é)+cge-ﬁ("?). @.14)

The general solution shows that every initial condition is attracted to the origin, so the origin
should be stable. However, points that start in the disk of radius § about the origin can leave,
at least for a while. For example, setting ¢ = 9, ¢; = 1. then x(0) = (-1, 1). However,
the second eigenvector quickly decays. leaving a large horizontal component. Consequently,
the orbit can move away from the origin for some time, as shown in Figure 4.6.
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Figure 4.6. Orbits of the system (4.14) that start in a neighborhood M never leave N.
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